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This paper is primarily concerned with the turbulence generated by the interaction 
of random entropy fluctuations with non-uniform mean flows. The results are obtained 
by using rapid distortion theory in conjunction with a high frequency solution of a 
previously developed wave equation that governs the small amplitude unsteady 
vortical and entropic motion on steady potential flows (Goldstein 1978). The analysis 
is applied to  symmetric contractions or expansions (or combinations of the two) and 
comparisons are made with a corresponding theory of Batchelor & Proudman (1954) 
for the rapid distortion of upstream turbulence by a contraction of this type. It is 
shown that the energy of the entropy-generated turbulence increases much more 
rapidly with contraction ratio than that of the imposed upstream turbulence. Turbu- 
lence of the former type can therefore dominate the latter even when the upstream 
entropy fluctuations are weak relative to the imposed turbulent intensities. Moreover 
the structure of the entropy-generated turbulence is found to be quite different from 
that of the contracted upstream turbulence. 

A secondary purpose of the paper is to  discuss some effects of compressibility on 
rapid distortion theory. 

1. Introduction 
There have been a large number of studies of the sound fields produced by entropy 

fluctuations passing through nozzles and other regions of non-uniform flow (Candel 
1972; Cumpsty & Marble 1974; Pickett 1974; Ffowcs Williams & Howe 1975). This 
work has, to  a large extent, been motivated by the need to understand the combustion 
or core noise generated by entropy fluctuations in jet engine combustors. The inter- 
action of these entropy fluctuations with the non-uniform downstream mean flow 
can also produce turbulence and other unsteady flows that can effect boundary-layer 
separation and transition and can contribute significantly to the unsteady turbine 
blade loads that result in reduced fatigue life. Since there is considerable interest in 
improving the fatigue life of gas turbine blades, it is important to study this entropy- 
generated turbulence. Needless to say, such studies are also important in their own 
right. 

I n  this paper we consider the turbulence that is generated when random entropy 
fluctuations are imposed on steady potential flows that would otherwise have uniform 
temperature and velocity a t  upstream infinity. As they are convected downstream 
the random upstream entropy fluctuations interact with the mean flow to produce 
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velocity fluctuations that are also random functions of space and time. Such velocity 
fluctuations must certainly be thought of as turbulence. 

We shall suppose that the ratio ,f3 of the temperature fluctuations, associated with 
the upstream entropy fluctuations, to the absolute mean flow temperature is small 
and that the mean flow and turbulence Reynolds numbers are large. I n  fact we shall 
require that /3 be small enough to ensure that /3(a/l) < 1 even when the scale 1 of the 
entropy fluctuations is small compared to the characteristic dimension a of the mean 
flow velocity gradients. Then a trivial modification of the argument used by Hunt 
(1973) for the distortion of imposed turbulence will show that turbulent motion can 
be treated as a small inviscid perturbation about a steady potential flow. 

A general theory for the small amplitude unsteady vortical and entropic motion 
on a potential flow was developed by Goldstein (1978), hereafter referred to as I. It 
was shown that the unsteady flow can be calculated by solving a single second-order 
linear wave equation. There is no essential restriction on the Mach number a t  which 
this result applies but, for definitiveness, its derivation was carried out for external 
flows with no incident acoustic fields. However there are many internal flows, especially 
in engineering devices where there is a premium in weight and space, that have uni- 
form upstream conditions and undergo large accelerations. The frictional effects of 
the walls cannot significantly penetrate into the main stream of such flows and they 
will consequently contain large regions of nearly potential flow. In  $ 2 we show that 
the results of I apply, with only trivial modification, to flows of this type. They can 
therefore be used to calculate the entropy-generated turbulence described above even 
for internal flows. 

This linearized calculation of the turbulence represents an extension of the rapid 
distortion theory developed by Batchelor & Proudman (1954) and Ribner & Tucker 
(1953), and generalized by Hunt (1973). I n  order to obtain simple formulas we con- 
sider only the classical rapid distortion limit where al l  < 1.  

I n  3 3 we obtain the high frequency solution to the linear wave equation given of I. 
The result applies for arbitrary upstream distortions of the mean potential flow that 
can in general consist of both entropy and velocity fluctuations. We then show that 
the portion of the solution associated with the upstream velocity fluctuations can be 
transformed into the one used by Batchelor & Proudman (1954) for an incompressible 
flow and that it generalizes the result used by Ribner & Tucker (1953) for a com- 
pressible flow. This part of the solution is therefore not considered further. 

But in $ 4  the portion of the solution associated with the entropy fluctuations is 
used to relate the turbulent velocity fluctuations at any point in the flow to the spec- 
trum of a random upstream entropy field, which is assumed to be homogeneous. 

Simple results are obtained for the case of a symmetric contraction, expansion or 
combination of the two. I n  $ 5  their physical implications are discussed for the case 
where the ratio c of the downstream to upstream velocities is greater than unity. 
The parameter c can be interpreted as the contraction ratio of the stream when the 
mean flow Mach number is not too large. It is shown that the energy of the entropy- 
generated turbulence eventually increases as c2 for large values of c while classical 
rapid distortion theory shows that the energy of the upstream imposed turbulence 
increases only linearly with c. Then even when the ratio /3 of the upstream temperature 
fluctuations to the mean temperature is small compared to the ratio of the upstream 
velocity fluctuations to the mean velocity, the entropy-generated turbulence can 
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eventually exceed the imposed turbulence - which is important to keep in mind 
when estimating the unsteady loads on obstacles placed in the stream. 

Only the energy in the axial velocity components of the entropy-generated turbu- 
lence increases with c ;  the energy of the transverse velocity components decreases 
like ( l /c)  lnc for large c.  This is again distinctly different from the behaviour of the 
imposed turbulence where transverse velocity energy increases with c and axial 
velocity energy decreases. 

For large values of c the one-dimensional spectrum of the turbulent energy becomes 
equal to the one-dimensional spectrum of the entropy fluctuations that produced the 
turbulence. 

2. The governing equations 
The most general small amplitude non-acoustic upstream distortion that can be 

imposed on a steady potential flow with otherwise uniform upstream conditions 
consists of a frozen solenoidal velocity field 

and no unsteady pressure field. Here U, denotes the constant mean flow velocity at 
upstream infinity, t denotes the time, x1,x2,x3 are Cartesian co-ordinates with x1 in 
the upstream mean flow direction. The quantities urn and s, can be taken to be any 
functions of their arguments. It was shown in I that the resulting perturbation in 
velocity 

u = vq5 + UO, (2.3) 

at any point of the flow will then consist of a rotational part UQ that is independent 
of the pressure fluctuations and is a known function of the upstream distortions u, 
and s, and the mean flow quantities; and an irrotational part V$ that is related to the 
pressure fluctuations p’ by 

P’IPO = - Do w t ,  (2.4) 

where D,/Dt = a/at + U .  V is the convective derivative based on the mean flow ve- 
locity U = {Ul, U,, U3). po = po(x)  is the mean flow density and x = (xl, x,, x,) is the 
position vector. 

The known contribution u(n = {u$I), up), ah1)) is given by 

~6’) = um(X-fUmt).f-+-sm(X-PUmt)-(@-UmXl) ay 1 a for i = 1,2,3,  
axi 

(2.5) 
axi 2cp 

where P is a unit vector in the x1 direction, @ is the mean flow velocity potential, cp 
is its specific heat at constant pressure; (which is assumed to be constant) and 

is a vector function of x such that X -+ x as x1 -+ - 00. The intersections of the surfaces 
X ,  = constant and X ,  = constant define the mean flow streamlines as shown 
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I Streamlines 

x3 

Streamlines 2.’ 

FIQURE 1. Illustration of X ,  and X ,  surfaces. 

schematically in figure 1. The quantity X,/Um is the Lighthill (1956)-Darwin (1953) 
‘drift’ function 

where xi, y,(xi, X,, X,), z,(xi, X,, X,) are the points of the streamline defined by the 
intersections of the surfaces X, = constant, X, = constant that pass through the 
point xl,x2,x3. The change in X,/Um between any two points on this streamline is 
equal to the time it takes a mean flow fluid particle to traverse the distance between 
those points, The quantity XI- U,t will therefore remain constant relative to an 
observer moving downstream with the mean flow and since X, and X, are constant 
along all mean flow streamlines, they will also have this property. 

Then since D,/Dt denotes differentiation following a fluid particle along its stream- 
line and since X - fU,t = {X, - vat, X,, X,}, it follows that 

%(X-fU,t) Dt = 0. (2.6) 

The components of the vector X-1U-t are essentially Lagrangian co-ordinates of 
the mean flow fluid particles. 

Finally, the ‘perturbation potential’ 4 (which is the only perturbation quantity 
that is not known) can be found by solving the linear inhomogeneous wave equation 

1 
V.(p,Vq5) = - v.p,uq D , 1 D o 4  1 

Dt c; Dt Po Po 
where co = co(x) is the mean flow sound speed. This equation has a dipole-type source 
term where strength pou(n is completely known in terms of the mean flow quantities 
and the upstream boundary conditions udo and 8,. Once its solution has been found all 
other flow quantities can be calculated by differentiation. 
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When rigid surfaces are present, equation (2.7) must be solved subject to the boun- 
dary condition 

fi . V$ + - fi . u(I) as x .+ boundary, (2.8) 

where fi is the unit normal to these surfaces. 
It is known that nonlinear effects can be important when small amplitude waves 

propagate upstream in a region of flow that is decelerating through Mach number 1 
(see Landahl 1961, pp. 12-14; Myers & Callegari 1978; Prasad & Krishnan 1977). 
We shall, therefore, suppose that the mean flow is always nondecelerating in any 
region where the local Mach number is close to unity. Then the present results should 
apply a t  any Mach number when the flow is internal to the bounding surfaces. But, as 
indicated in the introduction, the derivation of I- was, for definiteness, limited to 
external flows with no incident acoustic fields. We shall now show that the results 
apply, with only trivial modification, to any inviscid small amplitude motion on any 
steady potential flow (external or internal) that has uniform upstream conditions 
and is bounded by rigid surfaces. 

Since these flows are all described by the same linearized equations and involve the 
boundary condition (2.8), equations (2.3) and (2.4) with u(I) given by (2.5) and $ 
determined by (2.7) and (2.8) will certainly provide a solution to the governing equa- 
tions of any of these flows and this solution can always be made to satisfy appropriate 
boundary conditions on the rigid surfaces. It is therefore only necessary to show that 
it can also be made to satisfy appropriate conditions at  upstream infinity where the 
mean flow is uniform. 

Now it was shown by KovBsznay (1953) that the most general small amplitude 
motion on a uniform flow has a velocity field, say u+, that can be decomposed into the 
sum 

U t  = VqL +urn, (2.9) 

of (i) a frozen solenoidal velocity field u,  that is given by (2.1) and is completely de- 
coupled from the pressure and entropy fluctuations and (ii) an irrotational distur- 
bance V$, that produces no entropy fluctuations but is directly related to the pressure 
fluctuations and is as a result connected with any acoustic motion that may occur. 
Finally the fluctuations in entropy are given by (2.2) and are decoupled from the 
velocity and pressure fluctuations (but produce density fluctuations). The potential 
q5m satisfies a linear homogeneous wave equation with constant coefficients. A simple 
but rigorous proof of these assertions can be found in Goldstein (1976)) pp. 220-221. 

For the present purpose the important thing to notice is that each of these modes 
of motion (i.e. the vorticity mode, the pressure mode and the entropy mode) is itself 
a solution of the governing equations. In  fact (2.1) and (2.2) will satisfy these equa- 
tions for any functions u, and s, that have the indicated arguments and, since they 
represent disturbances that are convected downstream, these functions can still be 
specified as upstream boundary conditions. The pressure mode V$m will on the other 
hand correspond to actual acoustic motion since we itre dealing with the region at  
upstream infinity. The downstream propagating acoustic waves can be imposed as 
upstream boundary conditions but the upstream propagating waves must be deter- 
mined by the solution. We can, for example, ensure that there will be only outward 
propagating waves by imposing a Summerfeld radiation condition. 
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For the external flows considered in I all outgoing waves decayed and the incident 
acoustic fields were eliminated by imposing the condition q5 + 0 as x1 -+ -00. 

Now even when this boundary condition is not imposed, (2.3) through (2.7) still 
provide a solution to the appropriate governing equations and u(*) and the entropy 
fluctuations still approach (2.1) and (2.2) as x1 -+ -m. Then since po and U become 
constant as x, + - 00, (2.7) will reduce to the homogeneous acoustic wave equation 
with constant coefficients that governs the upstream pressure mode q5rn. Hence it 
follows from (3.3) that the perturbation velocity u will approach the form (2.9) and 
that 4 can be identified with @m as x1 -+ -a. The incident acoustic waves can be 
eliminated by requiring that 4 satisfy a radiation condition rather than the stronger 
condition 4 -+ 0 as x1 -+ - 00 that was imposed in I or we can, more generally, specify 
the portion of q5 that does not satisfy this radiation condition. The upstream vortical 
velocity and entropy fluctuations (2.1) and (2.2) can still, of course, be independently 
specified as upstream boundary conditions. Then with this slight modification of the 
upstream conditions the results of I will apply to the unsteady motion on any steady 
potential flow with uniform upstream conditions provided it does not decelerate 
through Mach number 1. 

3. High frequency solution to the wave equation for small distortions of a 
potential flow 

We are interested here in flows that exist for all time. Then, as explained in I, we 
need only consider an incident harmonic disturbance field of the type 

as xl-+ -a, 
urn = Aexp[ik.(x-iU,t)] 

s, = Bexp [ik. (x -iUrnt)] 

where A, B,  and k are, aside from the requirement that 

A . k  = 0, (3.2) 

arbitrary constants. The solution for any given incident distortion field can then be 
obtained by superposing solutions of this type, i.e. by letting A and B depend on k 
and integrating the solutions over k. 

Substituting (3.1) into (2.5) we find 

u(I) = exp [ik . (X - i U, t)] V[A . X + (B/2cp)  ( @ - U, XI)]. (3.3) 

If in (2.3), (2.7) and (3.3) we non-dimensionalize all lengths, including X, by a 
characteristic spatial scale a of the mean flow velocity gradients, the time by alum, 
the mean flow velocity by U, and 4 by lAla (or by aBUrn/c,), the wavenumber vector 
k will appear only in the combination ak  and the vector (X - x) and its derivatives 
will be of order one (except perhaps near the boundaries where X ,  can become infinite). 

Now suppose that 
alkl $ 1.  (3.4) 

Then substituting (3.3) into the right side of (2.7) yields 

1 1  B ---V.p,,u(I) = - - A.X+-(a-  UX,)  
Ikl Po Ikl ( axj a [ 2cp 

xexp[ik.(X-iU,t)]+O((alkl)-l) as alkl +a. (3.5) 
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Hence it is natural to seek a solution to (2.7) of the form 

1 
g5 = --D(x, t )  exp [ik. (X - PVwt)], (3.6) PI 

where D is a ‘slowly varying ’ function of x which together with its partial derivatives 
with respect to x,/a is assumed to be of order 1. In  fact, substituting (3.5) and (3.6) 
and using (2.6) yields 

--D~V(k.X)12exp[ik.(X-fUmt)] 1 = -1 i a  ,[A.X+--(@-UrnX1)]) B 
lkI2 lkl % 2CP 

exp[ik.(X-PU,t)]+O((~lkl)-~) as aJkl +a. 

Hence 
B 

D =  as alkl +00, (3.7) 
X 2  

(3.8) x = i X l ’ X 2 ’ X 3 )  = V(k.X) 

and x = 1x1. (3.9) 

where we have put 

Inserting (3.7) into (3.6) and using the result together with (3.3) in (2.3) we obtain 

where 

exp[ik.(X-PU,t)], (3.10) 

( 3 . 1 1 ~ )  

and it is understood that these formulas are to be summed from one to three on the 
repeated indices. 

These results can be written more compactly by introducing the permutation 
tensor c i j k  (c i jk  is equal to zero when any two indices are equal, equal to 1 when they 
are equal to a cyclic permutation of 1 , 2 , 3  and equal to - 1 otherwise) to obtain 

(3.1 1 b )  

(3.12 b )  
a 

x2 ax, 
N .  = &&! E k n i c k d  - (@ - urn X I ) ?  

which shows that Ni is just the ith component of the vector triple product 

- x x x x [V(@ - ~coX,)I/x2. 

Since X - + x  and x-+  k as xl-+ -00, (3.2) and (3.10) imply that u+u, as 
x1 -+ -00. Then the pressure mode V$ vanishes as x1 -+ - 00 and the upstream 
acoustic waves will be of higher order in (u/k/)-l as a ( k (  + co. In  fact, since (3.6) 
represents a disturbance which is locally frozen in the flow and which produces 
pressure fluctuations that are only O((u] k])-l), the potential disturbance Vg5 is 
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definitely non-acoustic everywhere in the flow. The acoustic motion will therefore 
not enter the analysis to the order of this solution and need not be considered 
further. This is not unexpected since the high frequency vortical motion (which 
the present solution represents) behaves locally as if it  were propagating through 
a uniform flow and, as we have seen in $ 2 ,  this produces no acoustic motion. 

The solution (3.10) through (3.12) will, in general, not satisfy the solid surface 
boundary condition (2.8). But, as shown by Hunt (1973) for the incompressible case, 
this condition can only effect the solution within a region O((nlkl)-l) surrounding the 
boundary and can therefore be ignored. 

The first term in (3.10) obviously represents the unsteady velocity field produced 
by the imposed upstream velocity perturbation u,. When the mean flow is incom- 
pressible, it can be transformed into the result used by Batchelor & Proudman ( 1  954) 
for that case (see appendix) and for a compressible flow it generalizes the result obtained 
by Ribner & Tucker (1953) for the special case where aX,/ax, is zero if i + j. We shall 
therefore not consider this term further. The second term in (3.10) represents the 
unsteady velocity field produced by the imposed upstream entropy fluctuations s,. 
It will be used to calculate the turbulence produced by a random entropy field. In  
order to do this it is first necessary to relate the turbulence velocity correlations at  any 
point of the flow to appropriate correlation spectra of the upstream disturbance field. 

4. Calculation of velocity correlations due to random homogeneous 
incident distortion 

It is easy to see that the velocity field produced by an arbitrary incident harmonic 
distortion can be expressed in the form (3.10) even when Jklu is not assumed to be 
large. Thus we can always write 

(4.1) 1 1 
ui = A&(x 1 k) A + - 4 ( x  I k) B exp ( - ik, U, t ) ,  i = 1,2 ,3 ,  [ 2% 

where Aij and 4 are independent of t ,  A ,  and B. Then when lklu is large [see (3.10)], 

A,. 23 = MijetI.X and 4 = N ; ( e " . X .  (4-2) 

When a statistically homogeneous but otherwise arbitrary random velocity fluc- 
tuation is imposed on the flow at upstream infinity, the velocity correlation a t  any 
other point of the flow 

is related to the spectrum 
R,,(x, x', 7) = Ui(X, t )  Uj(X', t + 7) (4.3) 

of the upstream velocity covariance tensor 

R$J'(y) = u,,(x-~PU,t)u,,(x+y-fU,t) (4.5) 

(which, owing to the assumed homogeneity, depends only on the indicated argument) 
by (Hunt 1973, 1977) 

R,,(x, x', 7) = //Im A . ( x  1 k ) 4 @ '  1 k) @$')(k) exp ( -  ik, U,7) dk, (4.6) 
-m 
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where the asterisk denotes the complex conjugate. Then the one-dimensional spec- 
trum 

Oij(x, x' I k,) = - Rij(x, x', 7) exp ( ik ,  U , 7 )  d7 (4.7) 2 r  urn Sm -- 
A completely analogous argument can be used to show that a statistically homo- 

geneous but otherwise random upstream entropy field, whose spectrum 

depends only on k = lkl owing to the assumed homogeneity, wiIl produce a random 
velocity field whose correlation and one-dimensional spectrum [(4.3) and (4.7) re- 
spectively] are given by 

and 

J/Jm &*(x I k)J$(x' I k) OS(k) exp ( -  ik, Um7) d k  (4.9) 

(4.10) 

1 
Rij(X, x', 7) = - 

(2c,)2 --OD 

/J" &*(x I k) 4 ( x '  1 k) @,(k) dk2dk3. 
1 

Oij(x, X' I k )  = - 
(2cp)' -m 

5. Spectrum and correlation of turbulence produced by random entropy 
fluctuations 

We can calculate Rij and Oij in the high frequency limit ka + 1 by substituting 
(3.12) into (4.2) and inserting the result together with a suitable expression for Qs 
into (4.9) and (4.10). However, it is generally not possible to express the resulting 
integrals in terms of elementary functions. On the other hand, this can easily be 
done for the case of a symmetric contraction or expansion (or combination of the two) 
and we shall therefore restrict our attention to this case. This type of flow occurs 
along the centre-line of a nozzle which can be convergent, divergent or convergent- 
divergent. 

We shall restrict our attention to the case where the flow is continuously accelerated. 
Then the linearized equations should be valid even in the transonic region and, since 
we are dealing with high frequencies, the acoustic motion is, as explained in $ 2 ,  
negligible to the order of approximation of the analysis. 

Ribner & Tucker (1953) and Batchelor & Proudman (1954) both considered flows 
of this type. Batchelor & Proudman treat only incompressible flows while Ribner & 
Tucker include compressibility effects. 

Since the mean flow is assumed to be symmetric in both cross-flow directions 

a@ q = - axi = gliU+ = &lic.cTrn, 

ax, - -  - 0 for i +j, 
axi 
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and it therefore follows from (2.6) that 

aLYl/axl = c-l, where c = U+/U, (5.4)) (5.5) 

is the ratio of U+, the mean flow velocity downstream of the contraction, to the up- 
stream velocity Urn. Then since p+/pm is equal to the determinant I (aLY,/ax,I 1 (Lamb 
1932, p. 14 and appendix D of I) 

= P+/Prn, (5.6) 

where p+ is the mean flow density downstream of the contraction and pw is the up- 
stream mean flow density. Hence introducing the polar co-ordinates 

I k, = k cos 0, 
k, = k sin 0 cos 6, 
k, = ksinBsin6, 

and using (3.8) we find that 

k 
l - C  

x - -case, x, = (ucc), ksinOcos6 and 

and therefore that (3.12) becomes 

N, = -No uc sin 0, 

N,  = No(u/c)* cos 0 sin 6, 
N, = ~ ~ ( a / c ) g .  cos e cos 6, 

(5.7) 

:, = (crc)*ksin0cos$ 

where 

Then it follows from (4.2), (4.3)) (4.8) and (4.9) that 

uiuj = ui(x, t )  uj(x, t )  = Bij(x, x, 0) = 0 if i + j 
and that 

(5.10) 

where 

JJ/ym cD,(k) d k  = 4nIOm cD8(k) k2dk 
- 
8% = S,(X - W , t )  S,(X - f U,t) = 

and a = (1  - 1 / ~ ~ 3 ) * .  (5.11) 

It is shown on p. 235 of Hinze (1  959) that a reasonable choice for QS is 
- 

QS(k) = s”, (E) 
(Zn), 3 [1+ (aolk)2]V’ 

where 1 is the integral scale of the upstream entropy fluctuations, 

(5.12) 
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and I? denotes the gamma function. Then inserting this into (4.10) and using (4.2) 
and (5.8) we find upon carrying out the integrations that 

where K ,  = lk,) (5.15) 

(5.16) 

and F denotes the hypergeometric function in the usual notation. 

6. Discussion of results 
We shall limit the discussion to the case where the flow is continuously accelerated. 

Then when the mean flow is nearly incompressible (i.e. when its Mach number is not 
too large) (T will be unity and c will represent the contraction ratio of the stream. 
For compressible flow c can only be interpreted as a velocity ratio. I n  fact the stream 
has to expand when the f l ~ w  is accelerated a t  supersonic speeds. 

= u," in the longitudinal and transverse components of the 
turbulence are plotted in figure 2. The second scale applies only when the mean flow 
is assumed to  be compressible. It represents the Mach number of the downstream 
flow for an upstream Mach number of 0.1. The same Mach number was used by Ribner 
& Tucker (1953) for their corresponding calculations of the amplification of upstream 
turbulence. 

The solid curve corresponds to  effectively incompressible mean flow. The dashed 
curve represents a compressible flow with an  initial Mach number of 0.1. The corres- 
ponding values of (T and c were calculated from the isentropic flow relations for an 
ideal gas by Ribner & Tucker (1953). For nearly incompressible mean flows the energy 
in the transverse velocities first increases with c and then decreases while that  in the 
axial velocities increases monotonically. However, the energy in the transverse 
components always remains considerably less than that in the axial component. 
The figure also shows that the axial energy is almost uninfluenced by compressibility 
until the free stream Mach number reaches a value of nearly l o !  At this point the 
compressibility effects cause a marked reduction in the energy. The transverse velo- 
cities are, on the other hand, much more strongly influenced by compressibility which 
now acts to increase the energy in these components. The effect is seen to  be signifi- 
cant even a t  subsonic Mach numbers. 

The energies and 
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I 7 4 6 8 10 20 40 60 100 
Velocity ratio (contraction ratio for incronlpressible flow 

I I 1 I ,  I 

0.1 0.7 0.4 0.6 I 2 10 
Downstreani Mach number  

FIGURE 2.  Components of turbulent energy owing to passage of entropy fluctuations through 
axisymmetric contractions. --, incompressible ; ---, compressiblc, initial Mach number = 0.1. 

I n  many cases of interest the contraction or velocity ratio c can be fairly large. 
Then since (5.11) shows that a: --f 1 as c + co, i t  follows from (5.9) and (5.10) that  

and 

An initial random entropy field will frequently be accompanied by a corresponding 
turbulence field. It is therefore worthwhile comparing the preceding results with the 
corresponding calculations of the turbulence intensities resulting from the contraction 
of an initial homogeneous isotropic turbulence field. Such calculations were carried 
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out by Batchelor & Proudman (1954) and Ribner & Tucker (1953). In fact it is shown 
on p. 74 of Batchelor (1953) that 

- 

as c + c o  for u = 1. (6.3) 

Thus, while the energy of the initial turbulence increases with c i t  follows from (6.1) 
that i t  does not increase as fast as the energy in the entropy-generated turbulence. 
Then even if the initial entropy fluctuations are weak relative to the initial turbulence 
intensities, i.e. even if 

the entropy-generated turbulence can eventually dominate that which is present in 
the incident stream. Since the pressure fluctuations are zero at upstream infinity, 
(&/cp)* is equal to p = tt*/T,, where @ denotes the root mean square upstream 
temperature fluctuation and T, the mean upstream absolute temperature. Typical 
values of the r.m.s. temperature ratio ,8 = F)/Tm just downstream of a jet engine 
combustor are of the order of 0.03-0.07 (Pickett 1974). It is unlikely that the turbu- 
lence intensity g j / U m  will exceed 0-3 in this region. It is therefore possible for the 
entropy-generated turbulence to exceed that initially in the stream whenever c ex- 
ceeds 5. Contractions of this magnitude are not uncommon in modern turbine 
nozzles. 

But even when this is not the case i t  is the energy in the axial component of entropy- 
generated turbulence that increases while the energy in this component decreases 
for the turbulence that originates upstream. Hence, the upstream entropy fluctuations 
can cause significant alterations in the structure of the downstream turbulence. 

We are frequently interested in the turbulence energy relative to that of the local 
stream. Then the energies calculated above must be divided by c2. The preceding 
results therefore show that the turbulent energy produced by the initial turbulence 
will eventually decrease relative to that of the stream while the entropy-generated 
turbulent energy will remain constant. 

Typical one-dimensional entropy-generated turbulence spectra are shown in figure 3. 
The curves indicate that the axial velocity spectra decrease with increasing frequency 
while the transverse velocity spectra exhibit a peak near lk, = 0.6. Results are shown 
for two different values of the contraction parameter c ( u * ) .  The first of these corres- 
ponds to a moderate contraction while the second corresponds to a large contraction. 

- - 

For large (d) c, 01 + 1 and the hypergeometric function in (5.13) is equal to 

1 1 7 ( 2 + 3  r(i)pp-(y) r(3)1 = +(I;) (I+). 

Hence, i t  follows from (5.13) that 

But it is shown by Hinze (1959, p. 234) that the quantity on the right is precisely the 
one-dimensional spectrum corresponding to the initial spectrum (5.12) of the upstream 
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( K I  = a,) wavrnurnber parameter 

FIGURE 3. Typical one-dimensional longitudinal turbulence spectra downstream of contraction. 
-, C(CT*) = 2;  ---, C ( U * )  = 10. 

entropy fluctuations. Then, since O,, = O,, + 0 as c + 00 the one-dimensional spec- 
trum of the turbulent energy becomes equal to the one-dimensional spectrum of 
entropy fluctuations from which i t  was generated whenever the contraction ratio is 
sufficiently large. 

It is also worth noting that 011 becomes independent of c and u for large c ( d ) .  
The figure shows that this limit is approached quite rapidly. On the other hand the 
hypergeometric function in (5.14) becomes logarithmically infinite as c ( d )  + co and 
the spectral shape always depends on this parameter, though in a very simple 
way. 

7. Concluding remarks 
We have analysed the turbulence generated by random entropy fluctuations in an 

accelerating stream. It is shown that the energy of the entropy-generated turbulence 
increases more rapidly with the contraction ratio of a subsonic flow than that of any 
imposed up8tream turbulence. This result indicates that the entropy-generated tur- 
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bulence may be more significant than the hydrodynamically generated turbulence in 
the turbine stages of aircraft engines. 

The author would like to thank Dr Theodore Fessler for carrying out the numerical 
computations. After this paper was accepted for publication I became aware of a 
related work by Corrsin (1952), which deals with steady non-uniformities in the entropy 
of a one-dimensional flow. 

Appendix 

it follows from the Laplace development of the determinant 
Let Ti, denote the tensor i3Xj/i3xl and let Sij be its inverse, i.e. let SijTj,  = ail. Then 

that cmn j A = Eqpr Tmq Tnp Tj, 
and since (2.15) implies that 

X i  = Tjik,, k n E m n j S k m A  = EkplXpTil' 

Substituting this into (3.11 b )  we obtain 

For incompressible flow A = 1 (see Lamb 1932, p. 14, and appendix D of I) and this 
result then coincides with Batchelor & Proudman's (1954) equation (3.6). 
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